Noise Models in Feature-based Stereo Visual Odometry

نویسندگان

  • Pablo Fernández Alcantarilla
  • Oliver J. Woodford
چکیده

Feature-based visual structure and motion reconstruction pipelines, common in visual odometry and large-scale reconstruction from photos, use the location of corresponding features in different images to determine the 3D structure of the scene, as well as the camera parameters associated with each image. The noise model, which defines the likelihood of the location of each feature in each image, is a key factor in the accuracy of such pipelines, alongside optimization strategy. Many different noise models have been proposed in the literature; in this paper we investigate the performance of several. We evaluate these models specifically w.r.t. stereo visual odometry, as this task is both simple (camera intrinsics are constant and known; geometry can be initialized reliably) and has datasets with ground truth readily available (KITTI Odometry and New Tsukuba Stereo Dataset). Our evaluation shows that noise models which are more adaptable to the varying nature of noise generally perform better.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Selecting Feature Detectors for Accurate Visual Odometry

This work analyzes the performances of different feature detectors/descriptors in the context of incremental path estimation from passive stereo vision (Visual Odometry). Several state-of-the-art approaches have been tested, including a fast Hessian-based feature detector/descriptor developed at INRIM. Tests on both synthetic image sequences and real data show that in this particular applicatio...

متن کامل

Image Gradient-based Joint Direct Visual Odometry for Stereo Camera

Visual odometry is an important research problem for computer vision and robotics. In general, the feature-based visual odometry methods heavily rely on the accurate correspondences between local salient points, while the direct approaches could make full use of whole image and perform dense 3D reconstruction simultaneously. However, the direct visual odometry usually suffers from the drawback ...

متن کامل

6D Visual Odometry with Dense Probabilistic Egomotion Estimation

We present a novel approach to 6D visual odometry for vehicles with calibrated stereo cameras. A dense probabilistic egomotion (5D) method is combined with robust stereo feature based approaches and Extended Kalman Filtering (EKF) techniques to provide high quality estimates of vehicle’s angular and linear velocities. Experimental results show that the proposed method compares favorably with st...

متن کامل

Fast Stereo-based Visual Odometry for Rover Navigation

The object of visual odometry is the computation of the path of a rover from onboard passive vision data only. The approach presented here relies on the accumulation of ego-motion estimates obtained by stereo vision and bundle adjustment of tracked feature points. We also propose a new feature detector/descriptor, which is a simplified and faster form of other well known descriptors (SURF). For...

متن کامل

Stereo vision specific models for particle filter-based SLAM

This work addresses the SLAM problem for stereo vision systems under the unified formulation of particle filter methods. In contrast to most existing approaches to visual SLAM, the present method does not rely on restrictive smooth camera motion models, but on computing incremental 6D pose differences from the image flow through a probabilistic visual odometry method. Moreover, our observation ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1607.00273  شماره 

صفحات  -

تاریخ انتشار 2016